
Intel® Network Builders

Making vRAN Software Portable Across Xeon
Generations with C++ SIMD class library
Nic Chautru
Network Edge Group, Wireless Access Network Division
September 26, 2022

Intel ConfidentialIntel® Network Builders 2

Outline

1. Intel FlexRAN Reference Architecture includes an optimized solution for building open, virtualized RAN
It aims for highly performant implementation for optimized signal processing workload while keeping
SW consistency across micro-architecture generations.

2. Available programming techniques: Intel C++ Class libraries and templates usage to allow developers to
simplify code development and evolution, portable across multiple generations of Xeons, while still
maximizing SIMD capabilities in each processor.

3. Examples of coding approach used in intensive workloads such as virtualized RAN (FlexRAN SDK)
showing:

• leveraging existing classes maintained by Intel and tightly coupled with oneAPI intel compiler

• writing cleaner, smaller and more maintainable code, not relying on low level intrinsics

• software portability and reuse across multiple generations: allowing code to coexist with previous
generations and to exploit the latest features in an efficient way notably for the new ISA in SPR

Intel FlexRAN Reference Architecture

Optimized reference code for L1 signal processing
workload while keeping SW consistency across micro-
architecture generations and exploiting latest CPU
features.

Intel ConfidentialIntel® Network Builders 4

FlexRAN™ Reference Architecture

FlexRAN™
LTE Ref

vDU

FlexRAN™
5G sub6 Ref

vDU

FlexRAN™
5G mMIMO6 Ref

vDU

FlexRAN™
5G ULRRC Ref

vDU

eBBU
Pooling

SDK

O-RAN
Front-Haul

SDK
L2 SDK

MLOG
SDK
L1

telemetry

DPDK
BBDEV
device
drivers

Cloud Platform

Pre-Integrated
SW and HW

stack

Modular SDKs

Cloud Native
deployment

Scalable HW for small cell,
Distributed RAN (D-RAN), and
Centralized RAN (C-RAN)

L1
Optimized

SDK
PHY

modules

Use Cases

Traditional
MIMO

Massive MIMO

Small Cell

mmWave and
sub6GHz

3GPP
Wireless

Performance
testing

FlexRAN is a SW and HW reference solution to enable customers build and deploy highly
optimized, scalable 4G/5G Cloud Native, fully virtualized, Open RAN solutions on Intel architecture

Intel ConfidentialIntel® Network Builders 5

+ IPC

+ Improved
acceleration

(+ integrated accel
options)

+ FP16

+ IPC

+ Improved
acceleration (eASIC)

+ More Cores

+ DFT acceleration

’23-24 Platform

Intel vRAN Roadmap – 2X Every Gen

’22-23 Platform

ICX-SP

Cloud RAN

2X Server
Perf/Watt

SKL/CLX

Cloud RAN

2X Server
Perf/Watt

’21 Platform

Each Generation of Intel ® Xeon Delivering 2x baseband performance gain with ISO power.

Keeping SW consistent across generations while maintaining flexibility

Byte Manipulation & Bit

instructions

+
AVX512_FP16

>40 new instructions with

FP16 & Complex number

arithmetic

+

FEC Accelerator

Ethernet

FEC Accelerator

Ethernet
Ethernet

AVX512AVX512

SPR

Cloud RAN

AVX512_FP16

Intel ConfidentialIntel® Network Builders 6

C++ Class & Standard Libraries for High Performant & Portable SW

• Intel C++ Class libraries allow developers to simplify code development and evolution , increase forward and backward
portability and decrease maintenance costs

• Intel FlexRAN 22.03 (FlexRAN’s first major Dvec release) delivered
• Measurable reduction in source code; on multiple uArchitectures delivering open RAN HW / SW Disaggregation

Intel® C++ Class Libraries

Compile for ICX
AVX512

Compile for ICX
AVX512 & SPR
AVX512+FP16

Compile for
SPR
AVX512+FP16

Compile for
SPR & …

Develop & Maintain One Code Base, Run on multiple Processors

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/libraries/intel-c-class-libraries.html

Intel ConfidentialIntel® Network Builders 7

New Instructions
▪ 42 New Instructions: designed for entire algorithms to be written in FP16
▪ Basic Operations: add, sub, mul and div
▪ Fused Operations: fmadd, fmsub, fmaddsub… including negated equivalents (fnmadd)
▪ Extended Operations: rcp, rsqrt, min/max, compare, scale
▪ Conversions: to and from signed and unsigned integer and other floating-point formats
▪ Complex Instructions: plain and fused multiply operations and conjugated variants
▪ General 16-bit support: provided using existing ‘epi16’ AVX512 instructions

Key Workloads, Libraries and Tools Support
Workloads: Layer Mapper, Resource Element Mapper, Precoding, Front Haul Formatting,
Eigen Beamforming, SRS Channel Estimation, LLR De-mapping, PUSCH Channel
Estimation, MMSE Equalization, DMRS Generation

SW Libraries: FlexRAN SDK, MKL

Tools: Compilers, Intel Debugger, Software Development Emulator, DVEC

AVX512_FP16– Sapphire Rapids
New Built-in Instructions for 5G RAN workloads

Benefits FlexRAN Layer 1

Half Precision (IEEE754) 16-bit floating
point data types
Compared to 32-bit single precision floating point

data types it gives better data storage efficiency
(cache, memory, registers) and higher throughput

Complex Data Operations
Plain and fused multiply operations, and conjugated
variants of the same

Reduced Development Complexity
Floating point offers wide dynamic range, while
implicitly offloading dynamic ranging/scaling to HW
compared to 16-bit integer

Intel C++ Class libraries and templates allow developers
to simplify code development and evolution, and
increase forward and backward portability

Intel ConfidentialIntel® Network Builders 9

Accessing processor vector capabilities

▪ Signal processing algorithms implementation relying heavily on vectorized
SIMD processing (AVX2, AVX512, AVX512_FP16)

▪ Broadly speaking, there are three ways to access vector features of the
processor:

• Auto-vectorisation: Try to let the compiler do it for you.

• Intrinsics: Explicitly tell the compiler what you want

• Overloaded vector operations: syntactic sugar on top of intrinsics:

• Use Intel’s C++ SIMD class library (tight integration to OneAPI optimisation)

• Convenient interface to access underlying instructions

• Other libraries also exist

Intel ConfidentialIntel® Network Builders 10

Use of intrinsics to access ISA-specific features

The compiler can’t always get the best performance out of the processor:

▪ Auto-vectorisation doesn’t always do what the programmer wants

▪ Some instruction set features are not designed to be accessible by the compiler.

In this case, intrinsics can be used to directly access the underlying instruction set to
allow the programmer to express themselves directly.

Using intrinsics allows direct access to the processor, and potentially very high
performance. For example, a multiply-accumulate (fused-multiply-add) operation:

AVX2:

AVX-512:

BUT Intrinsics can be verbose, tedious to write, hard to read, and make it difficult to
quickly get the sense of a program for non low-level experts.

Portability of code is reduced because the intrinsic names tend to be hard-coded to the
platform

Intel ConfidentialIntel® Network Builders 11

C++ SIMD header allows operator-like programming style

The C++ SIMD library provides a full suite of operators to turn abstract vector types into built-in types:

AVX2:

AVX-512:

Identical code will be generated compared to the original intrinsics.

C++ SIMD library code is just as fast, and it’s readable too, including support for operators and functions/utility

Intel SIMD library supports many ISAs and data types

- Instruction sets: MMX, SSE, AVX, AVX2, AVX-512, AVX-512_FP16, future.

- Data Types: Integer 8/16/32/64, float 16/32/64

- dvec, ivec, fvec, hvec, vec_complex all incrementally extend the C++ class templates reference for SIMD

SIMD data type – 8 x 32-bit floating-point in one
vector
Clean, simple code fragment working on SIMD
data types using normal operators.

Only the data type has changed – the mac code
fragment is identical.

Intel ConfidentialIntel® Network Builders 12

Reasons to use Intel’s SIMD library

There are alternatives to the Intel C++ SIMD class library (e.g., open source projects,
Vector Class Library, custom made…).

There are several good reasons to use Intel’s library, rather than an alternative or custom
solution:

▪ It is maintained by Intel as part of the compiler. No need to invest time and effort
maintaining custom header libraries.

▪ Tight optimisation integration with the Intel compiler (e.g., conjugate support in hvec is
provided in such a way that oneAPI peephole optimisations work effectively).

▪ Intel’s SIMD library exposes Intel-specific SIMD features and exploits those features in
efficient ways.

▪ It provides a layer of abstraction which makes the code easier to understand than
using intrinsics and in many cases is more portable

▪ Intel’s C++ SIMD class library is supplied as part of the Intel compiler release, and
works best in that environment

Intel ConfidentialIntel® Network Builders 13

▪ Many algorithms will work on any data type. For example, sum a sequence of values.

▪ Using templates in association with dvec enables the use of a single generic function.

▪ Allows for separation of type from algorithm

▪ Reduces function duplication as the same function can be called for any data type.

▪ Common algorithms can be written once, and then reused on other SIMD data types.

template<typename T>
T sum(T* values, int size) {

T result = 0;
for (int i=0; i<size; ++i)

result = result + values[i];
return result;

}

F32vec16 values[1024];
auto sum = sum(values, 1024);

Templates allow separation of types from algorithms

Intel ConfidentialIntel® Network Builders 14

▪ The other use for templates in the FlexRAN code is for compile time specialization which
brings other specific noteworthy advantages

▪ Typically used for dimensions (matrix, number of antennas, layers…)

▪ The compiler knows exactly the size of the problem and can generate more efficient
specialized code (no loop nor branch, just straight-line parallel code, more likely to inline).

▪ Specialization through template allows optimized code while still using a very compact code
base. The associated reduction in source code foot print enables lowered software
development costs and higher software quality.

▪ Can increase code size but it allows highly efficient code with limited code base.

Templates used for algorithm specialization

template<size_t N_RX, size_t N_L, uint8_t nLayerPerUe, typename T>
void mimo_mmse_llr_avx512_interp(bblib_pusch_irc_symbol_processing_request *request,

bblib_pusch_irc_symbol_processing_response* response)

Intel ConfidentialIntel® Network Builders 15

▪ Kernels need at least some form of run-time parameterization. Use branching to select the
appropriate specialisation:

▪ Select at run-time:

Templates used for algorithm specialization (contd)

if (1 == nLayer) {
if(1 == nLayerPerUE && 1 == nUeInGroup) {

switch (nRxAnt) {
case 1: mimo_mmse_llr_avx512_interp<1, 1, 1, T>(request, response);
case 2: mimo_mmse_llr_avx512_interp<2, 1, 1, T>(request, response);
case 4: mimo_mmse_llr_avx512_interp<4, 1, 1, T>(request, response);
case 16: mimo_mmse_llr_avx512_interp<16, 1, 1, T>(request, response);
default: throw std::runtime_error ("Invalid number of Ants");
}

}
} else if(2 == nLayer) {

…

FlexRAN SDK examples

Intel ConfidentialIntel® Network Builders 17

Example 1:

template<typename T>
void fd_correlation(

const bblib_fd_correlation_request *request,
bblib_fd_correlation_response *response)

{
constexpr unsigned complex_values_per_t = sizeof(T) / 4;
const int16_t n_loop = request->len / complex_values_per_t;
const int16_t n_rem = request->len - (n_loop * complex_values_per_t);
T *pIn0 = reinterpret_cast<T *>(request->in0);
T *pIn1 = reinterpret_cast<T *>(request->in1);
T *pOut = reinterpret_cast<T *>(response->out);

#pragma unroll(8)
for(int i=0; i<n_loop; i++)
{

auto in0 = loadu(pIn0 + i);
auto in1 = loadu(pIn1 + i);
auto out = fmulconj(in0, in1);
storeu(pOut++, out);

}
<…>
}

fd_correlation<CF16vec16>(request, response);

fd_correlation<Is16vec32>(request, response);

• Frequency domain correlation between
2 IQ sequences

• On SPR this can be run using <CF16vec16>
for complex floating point data type

• On ICX this can be run using <Is16vec32>
for fixed point data type (I+Q)

• The underlying function may use different
specialized implementation

• On SPR the new native complex ISA-specific
capabilities are being exploited as only SPR has
support for complex-valued hardware
instructions while keeping common code with
previous generation.

Intel ConfidentialIntel® Network Builders 18

Example 2: template<typename T, size_t N_RX = 16, size_t N_TX = 16>
static void mimo_mmse_llr_avx512(bblib_pusch_symbol_processing_request *request,
bblib_pusch_symbol_processing_response* response){
{

T *pRxIn[BBLIB_N_SYMB_PER_SF][N_RX], *pChIn[1][N_TX][N_RX];
T ChIn[N_TX][N_RX];

…
//1. A = H' * H + Sigma2
if constexpr (fp16Int16 == FP16_E::INT16) {

HxH (ftempARe, ftempBRe, ChIn, ftempAIm,
ftempBIm, ChImNegRe, avxfSigma2);

// 2. invA = inv(H' * H + Sigma2*I)
matrix_inverse<N_TX>(ftempBRe, ftempBIm, finvARe,

finvAIm);
// 3. gain calc
gainCalc(ftempGain, ftempPostSINR, avxGainShift,

finvAIm, finvARe, ftempAIm, …);
}
else
{

//1. A = H' * H + Sigma2
HxH<T, N_TX, N_RX> (ftempARe, ftempBRe, ChIn,

avxfSigma2);
// 2. invA = inv(H' * H + Sigma2*I)
matrix_inverse<T, N_TX>(ftempBRe);
// 3. gain calc
gainCalc(ftempGain, ftempPostSINR, ftempBRe, ftempARe…);

}
…

}
}

else if(3 == nLayer) {

if (4 == nRxAnt) {
mimo_mmse_llr_avx512_interp<T, 4, 3>(request, response);

• MMSE MIMO equalization

• Template usage based on N_TX, N_RX

• When type do not allow to reuse code,
option to have parallel implementation
using function overloading for independent
specialized implementation and/or
specialization

• Compile time selector to switch between the
2 options based on data type used (here
complex split into 1 or 2 arrays).

Intel ConfidentialIntel® Network Builders 19

Example 3:
// complex conjugates mul a * conj(b)

friend CF16vec16 fmulconj (const CF16vec16 &a, const CF16vec16 &b) { return
_mm512_fcmul_pch(a.vec, b.vec); }

/* multiply complex: (A + iB)*(C+iD) = AC-BD + i(AD+BC) */
inline FORCE_INLINE Is16vec32 fmul(const Is16vec32& input0, const Is16vec32& input1)
{

const __m512i m512_sw_r = _mm512_set_epi8(
61, 60, 61, 60, 57, 56, 57, 56, 53, 52, 53, 52, 49, 48, 49, 48,
45, 44, 45, 44, 41, 40, 41, 40, 37, 36, 37, 36, 33, 32, 33, 32,
29, 28, 29, 28, 25, 24, 25, 24, 21, 20, 21, 20, 17, 16, 17, 16,
13, 12, 13, 12, 9, 8, 9, 8, 5, 4, 5, 4, 1, 0, 1, 0);

const __m512i m512_sw_i = _mm512_set_epi8(
63, 62, 63, 62, 59, 58, 59, 58, 55, 54, 55, 54, 51, 50, 51, 50,
47, 46, 47, 46, 43, 42, 43, 42, 39, 38, 39, 38, 35, 34, 35, 34,
31, 30, 31, 30, 27, 26, 27, 26, 23, 22, 23, 22, 19, 18, 19, 18,
15, 14, 15, 14, 11, 10, 11, 10, 7, 6, 7, 6, 3, 2, 3, 2);

const Mask32 nMaskNegQ =0x55555555;

// Select real or image part from a complex value
__m512i ReRe = _mm512_shuffle_epi8(input0, m512_sw_r);
__m512i ImIm = _mm512_shuffle_epi8(input0, m512_sw_i);

// Swap real or image part and negative image part from a complex value
// switch IQ
__m512i tmp1 = _mm512_rol_epi32(input1,16);/* t1,t0,t3,t2,t5,t4,t7,t6 */

// Negative the Q part
__m512i negImPosRe = _mm512_mask_sub_epi16(tmp1, nMaskNegQ, _mm512_setzero_si512(), tmp1); /* -

t1,t0,-t3,t2,-t5,t4,-t7,t6 */

// Multiply complex
tmp1 = _mm512_mulhrs_epi16(ReRe, input1);
__m512i tmp2 = _mm512_mulhrs_epi16(ImIm, negImPosRe);
return _mm512_adds_epi16(tmp1, tmp2);

}

xmmEstH[1] = fmulconj(S_CAST<Is16vec32>(xmmHTemp[1]),S_CAST<Is16vec32>(xmmTAComp));

• There are still cases when
dev/hvec/vec_complex may not always be
sufficient

• We can define some custom classes in case
missing which can be used within the code as
an extension for default available vec_complex
support for CF16vec16.

• The actual implementations would be using the
available native instruction

Intel ConfidentialIntel® Network Builders 20

Example 4:

template<unsigned NUM_LLRS, typename ISA>
struct PolarListRecursiveInt16
{
static constexpr unsigned halfLlrs = NUM_LLRS / 2;
static ListStructure
Recurse (const __m128i* RESTRICT llrs_in, const SimdBitset<NUM_LLRS>& frozen,

const SimdBitset<NUM_LLRS>& parity, BitList* RESTRICT message,
BitList* RESTRICT codeword, Is16vec8& ref_metric,
__m128i& ref_parity_reg, unsigned& ref_decision)

{
__align(64) __m128i llrBuffer[halfLlrs] = { };

ISA::template LlrPriorMinProdInt16<halfLlrs * 8>(llrs_in, llrs_in +
halfLlrs, llrBuffer);

SimdBitset<halfLlrs> frozenUpper = frozen.Lower();
SimdBitset<halfLlrs> parityUpper = parity.Lower();

ISA::template LlrPosteriorFrozenInt16<halfLlrs * 8>(llrs_in, llrs_in
+ halfLlrs, llrBuffer);
<…>

list2 = PolarParityListRecursiveInt16<halfLlrs, ISA>::
Recurse(llrBuffer, frozenLower, parityLower, message + list1.msg_len,
codeword + halfLlrs, ref_metric, ref_parity_reg, ref_decision);
}

<…>
}

};

• Polar decoder implementation using a
recursive template

• Organized different so that the compiler can
understand the structure and optimize
accordingly : Size explicitly known through
specialization, not calling itself, flat raw code
generated without branches, with lots of
parallelism.

• Possible to mix this conventional function for
higher levels to find right balance on
flattening the code.

• Possible to specialize some specific sizes
when developer knows better for some
special cases

• Also applicable for FFT butterfly algorithm

• Maximized code reused and optimized

Intel ConfidentialIntel® Network Builders 21

Summary
1. Intel FlexRAN Reference Architecture is an optimized solution for building open, virtualized RAN

It aims for highly performant implementation for optimized signal processing workload while keeping

SW consistency across micro-architecture generations.

2. Available programming techniques: Intel C++ Class libraries and templates usage to allow developers to
simplify code development and evolution, enable portability across multiple generations of Xeons, while still
maximizing leverage of SIMD capabilities in each processor.

3. Examples of coding approach used in intensive workloads such as virtualized RAN (FlexRAN SDK) showing:

• leveraging existing classes maintained by Intel and tightly coupled with oneAPI intel compiler

• writing cleaner, smaller and more maintainable code, not relying on low level intrinsics

• software portability and reuse across multiple generations: allowing code to coexist with previous generations
and to exploit the latest features in an efficient way notably for the new ISA in SPR

• reduce overall Total Cost of Ownership (TCO) and Faster Time To Market (TTM) without sacrificing performance

Intel ConfidentialIntel® Network Builders 22

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/PerformanceIndex

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available ​updates. See backup for configuration details. No product or component can be
absolutely secure.​​

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or
its subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

