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Outline

1. Intel FlexRAN Reference Architecture includes an optimized solution for building open, virtualized RAN
It aims for highly performant implementation for optimized signal processing workload while keeping 
SW consistency across micro-architecture generations. 

2. Available programming techniques: Intel C++ Class libraries and templates usage to allow developers to 
simplify code development and evolution, portable across multiple generations of Xeons, while still 
maximizing SIMD capabilities in each processor.

3. Examples of coding approach used in intensive workloads such as virtualized RAN (FlexRAN SDK) 
showing:

• leveraging existing classes maintained by Intel and tightly coupled with oneAPI intel compiler

• writing cleaner, smaller and more maintainable code, not relying on low level intrinsics

• software portability and reuse across multiple generations: allowing code to coexist with previous 
generations and to exploit the latest features in an efficient way notably for the new ISA in SPR



Intel FlexRAN Reference Architecture

Optimized reference code for L1 signal processing 
workload while keeping SW consistency across micro-
architecture generations and exploiting latest CPU 
features.
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FlexRAN is a SW and HW reference solution to enable customers build and deploy highly 
optimized, scalable 4G/5G Cloud Native, fully virtualized, Open RAN solutions on Intel architecture
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C++ Class & Standard Libraries for High Performant & Portable SW

• Intel C++ Class libraries allow developers to simplify code development and evolution , increase forward and backward 
portability and decrease maintenance costs

• Intel FlexRAN 22.03 (FlexRAN’s first major Dvec release) delivered
• Measurable reduction in source code; on multiple uArchitectures delivering open RAN HW / SW Disaggregation

Intel® C++ Class Libraries

Compile for ICX 
AVX512

Compile for ICX 
AVX512 & SPR 
AVX512+FP16

Compile for 
SPR 
AVX512+FP16

Compile for 
SPR & …

Develop & Maintain One Code Base, Run on multiple Processors

https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/libraries/intel-c-class-libraries.html
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New Instructions 
▪ 42 New Instructions: designed for entire algorithms to be written in FP16 
▪ Basic Operations: add, sub, mul and div
▪ Fused Operations: fmadd, fmsub, fmaddsub… including negated equivalents (fnmadd)
▪ Extended Operations: rcp, rsqrt, min/max, compare, scale
▪ Conversions: to and from signed and unsigned integer and other floating-point formats
▪ Complex Instructions: plain and fused multiply operations and conjugated variants
▪ General 16-bit support: provided using existing ‘epi16’ AVX512 instructions

Key Workloads, Libraries and Tools Support
Workloads: Layer Mapper, Resource Element Mapper, Precoding, Front Haul Formatting, 
Eigen Beamforming, SRS Channel Estimation, LLR De-mapping, PUSCH Channel 
Estimation, MMSE Equalization, DMRS Generation

SW Libraries: FlexRAN SDK, MKL

Tools: Compilers, Intel Debugger, Software Development Emulator, DVEC

AVX512_FP16– Sapphire Rapids
New Built-in Instructions for 5G RAN workloads 

Benefits FlexRAN Layer 1 

Half Precision (IEEE754) 16-bit floating 
point data types
Compared to 32-bit single precision floating point 

data types it gives better data storage efficiency 
(cache, memory, registers)  and higher throughput

Complex Data Operations 
Plain and fused multiply operations, and conjugated 
variants of the same  

Reduced Development Complexity
Floating point offers wide dynamic range, while 
implicitly offloading dynamic ranging/scaling to HW 
compared to 16-bit integer



Intel C++ Class libraries and templates allow developers 
to simplify code development and evolution, and 
increase forward and backward portability
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Accessing processor vector capabilities

▪ Signal processing algorithms implementation relying heavily on vectorized 
SIMD processing (AVX2, AVX512, AVX512_FP16)

▪ Broadly speaking, there are three ways to access vector features of the 
processor:

• Auto-vectorisation: Try to let the compiler do it for you.

• Intrinsics: Explicitly tell the compiler what you want

• Overloaded vector operations: syntactic sugar on top of intrinsics:

• Use Intel’s C++ SIMD class library (tight integration to OneAPI optimisation)

• Convenient interface to access underlying instructions

• Other libraries also exist
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Use of intrinsics to access ISA-specific features

The compiler can’t always get the best performance out of the processor:

▪ Auto-vectorisation doesn’t always do what the programmer wants

▪ Some instruction set features are not designed to be accessible by the compiler.

In this case, intrinsics can be used to directly access the underlying instruction set to 
allow the programmer to express themselves directly.

Using intrinsics allows direct access to the processor, and potentially very high 
performance. For example, a multiply-accumulate (fused-multiply-add) operation:

AVX2:

AVX-512:

BUT Intrinsics can be verbose, tedious to write, hard to read, and make it difficult to 
quickly get the sense of a program for non low-level experts. 

Portability of code is reduced because the intrinsic names tend to be hard-coded to the 
platform
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C++ SIMD header allows operator-like programming style

The C++ SIMD library provides a full suite of operators to turn abstract vector types into built-in types:

AVX2:

AVX-512:

Identical code will be generated compared to the original intrinsics.

C++ SIMD library code is just as fast, and it’s readable too, including support for operators and functions/utility

Intel SIMD library supports many ISAs and data types

- Instruction sets: MMX, SSE, AVX, AVX2, AVX-512, AVX-512_FP16, future.

- Data Types: Integer 8/16/32/64, float 16/32/64

- dvec, ivec, fvec, hvec, vec_complex all incrementally extend the C++ class templates reference for SIMD

SIMD data type – 8 x 32-bit floating-point in one 
vector
Clean, simple code fragment working on SIMD 
data types using normal operators.

Only the data type has changed – the mac code 
fragment is identical.
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Reasons to use Intel’s SIMD library

There are alternatives to the Intel C++ SIMD class library  (e.g., open source projects, 
Vector Class Library, custom made…). 

There are several good reasons to use Intel’s library, rather than an alternative or custom 
solution:

▪ It is maintained by Intel as part of the compiler. No need to invest time and effort 
maintaining custom header libraries.

▪ Tight optimisation integration with the Intel compiler (e.g., conjugate support in hvec is 
provided in such a way that oneAPI peephole optimisations work effectively).

▪ Intel’s SIMD library exposes Intel-specific SIMD features and exploits those features in 
efficient ways.

▪ It provides a layer of abstraction which makes the code easier to understand than 
using intrinsics and in many cases is more portable

▪ Intel’s C++ SIMD class library is supplied as part of the Intel compiler release, and 
works best in that environment
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▪ Many algorithms will work on any data type. For example, sum a sequence of values.

▪ Using templates in association with dvec enables the use of a single generic function.

▪ Allows for separation of type from algorithm

▪ Reduces function duplication as the same function can be called for any data type.

▪ Common algorithms can be written once, and then reused on other SIMD data types. 

template<typename T>
T sum(T* values, int size) {

T result = 0;
for (int i=0; i<size; ++i)

result = result + values[i];
return result;

}
------
F32vec16 values[1024];
auto sum = sum(values, 1024);

Templates allow separation of types from algorithms
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▪ The other use for templates in the FlexRAN code is for compile time specialization which 
brings other specific noteworthy advantages

▪ Typically used for dimensions (matrix, number of antennas, layers…) 

▪ The compiler knows exactly the size of the problem and can generate more efficient 
specialized code (no loop nor branch, just straight-line parallel code, more likely to inline).

▪ Specialization through template allows optimized code while still using a very compact code 
base. The associated reduction in source code foot print enables lowered software 
development costs and higher software quality.

▪ Can increase code size but it allows highly efficient code with limited code base. 

Templates used for algorithm specialization

template<size_t N_RX, size_t N_L, uint8_t nLayerPerUe, typename T>
void mimo_mmse_llr_avx512_interp(bblib_pusch_irc_symbol_processing_request *request, 

bblib_pusch_irc_symbol_processing_response* response)
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▪ Kernels need at least some form of run-time parameterization. Use branching to select the 
appropriate specialisation:

▪ Select at run-time:

Templates used for algorithm specialization (contd)

if (1 == nLayer) {
if(1 == nLayerPerUE && 1 == nUeInGroup) {

switch (nRxAnt) {
case 1: mimo_mmse_llr_avx512_interp<1, 1, 1, T>(request, response);
case 2: mimo_mmse_llr_avx512_interp<2, 1, 1, T>(request, response);
case 4: mimo_mmse_llr_avx512_interp<4, 1, 1, T>(request, response);
case 16: mimo_mmse_llr_avx512_interp<16, 1, 1, T>(request, response);
default: throw std::runtime_error ("Invalid number of Ants");
}

}
} else if(2 == nLayer) {

…



FlexRAN SDK examples
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Example 1: 

template<typename T>
void fd_correlation(

const bblib_fd_correlation_request *request,
bblib_fd_correlation_response *response)

{
constexpr unsigned complex_values_per_t = sizeof(T) / 4;
const int16_t n_loop = request->len / complex_values_per_t;
const int16_t n_rem = request->len - (n_loop * complex_values_per_t);
T *pIn0 = reinterpret_cast<T *>(request->in0);
T *pIn1 = reinterpret_cast<T *>(request->in1);
T *pOut = reinterpret_cast<T *>(response->out);

#pragma unroll(8)
for(int i=0; i<n_loop; i++)
{

auto in0 = loadu(pIn0 + i);
auto in1 = loadu(pIn1 + i);
auto out = fmulconj(in0, in1);
storeu(pOut++, out);

}
<…>
}
----------------
fd_correlation<CF16vec16>(request, response);

fd_correlation<Is16vec32>(request, response);

• Frequency domain correlation between 
2 IQ sequences

• On SPR this can be run using <CF16vec16>
for complex floating point data type

• On ICX this can be run using <Is16vec32>
for fixed point data type (I+Q)

• The underlying function may use different 
specialized implementation

• On SPR the new native complex ISA-specific
capabilities are being exploited as only SPR has 
support for complex-valued hardware 
instructions while keeping common code with 
previous generation.
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Example 2: template<typename T, size_t N_RX = 16, size_t N_TX = 16>
static void mimo_mmse_llr_avx512(bblib_pusch_symbol_processing_request *request, 
bblib_pusch_symbol_processing_response* response){
{

T *pRxIn[BBLIB_N_SYMB_PER_SF][N_RX], *pChIn[1][N_TX][N_RX];
T ChIn[N_TX][N_RX];

…
//1. A = H' * H + Sigma2
if constexpr (fp16Int16 == FP16_E::INT16) {

HxH ( ftempARe, ftempBRe, ChIn, ftempAIm,
ftempBIm, ChImNegRe, avxfSigma2);

// 2. invA = inv(H' * H + Sigma2*I)
matrix_inverse<N_TX>(ftempBRe, ftempBIm, finvARe,

finvAIm);
// 3. gain calc
gainCalc(ftempGain, ftempPostSINR, avxGainShift, 

finvAIm, finvARe, ftempAIm, …);
}
else
{

//1. A = H' * H + Sigma2
HxH<T, N_TX, N_RX> ( ftempARe, ftempBRe, ChIn, 

avxfSigma2);
// 2. invA = inv(H' * H + Sigma2*I)
matrix_inverse<T, N_TX>(ftempBRe);
// 3. gain calc
gainCalc(ftempGain, ftempPostSINR, ftempBRe, ftempARe…);

}
…

}
}
----------------
else if(3 == nLayer) {

if (4 == nRxAnt) {
mimo_mmse_llr_avx512_interp<T, 4, 3>(request, response);

• MMSE MIMO equalization

• Template usage based on N_TX, N_RX

• When type do not allow to reuse code,
option to have parallel implementation
using function overloading for independent 
specialized implementation and/or 
specialization

• Compile time selector to switch between the 
2 options based on data type used (here 
complex split into 1 or 2 arrays). 
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Example 3: 
// complex conjugates mul a * conj(b)

friend CF16vec16 fmulconj (const CF16vec16 &a, const CF16vec16 &b) { return
_mm512_fcmul_pch(a.vec, b.vec); }

/* multiply complex: (A + iB)*(C+iD) = AC-BD + i(AD+BC) */
inline FORCE_INLINE Is16vec32 fmul(const Is16vec32& input0, const Is16vec32& input1)
{

const __m512i m512_sw_r = _mm512_set_epi8(
61, 60, 61, 60, 57, 56, 57, 56, 53, 52, 53, 52, 49, 48, 49, 48,
45, 44, 45, 44, 41, 40, 41, 40, 37, 36, 37, 36, 33, 32, 33, 32,
29, 28, 29, 28, 25, 24, 25, 24, 21, 20, 21, 20, 17, 16, 17, 16,
13, 12, 13, 12, 9, 8, 9, 8, 5, 4, 5, 4, 1, 0, 1, 0);

const __m512i m512_sw_i = _mm512_set_epi8(
63, 62, 63, 62, 59, 58, 59, 58, 55, 54, 55, 54, 51, 50, 51, 50,
47, 46, 47, 46, 43, 42, 43, 42, 39, 38, 39, 38, 35, 34, 35, 34,
31, 30, 31, 30, 27, 26, 27, 26, 23, 22, 23, 22, 19, 18, 19, 18,
15, 14, 15, 14, 11, 10, 11, 10, 7, 6, 7, 6, 3, 2, 3, 2);

const Mask32 nMaskNegQ =0x55555555;

// Select real or image part from a complex value
__m512i ReRe = _mm512_shuffle_epi8(input0, m512_sw_r);
__m512i ImIm = _mm512_shuffle_epi8(input0, m512_sw_i);

// Swap real or image part and negative image part from a complex value
// switch IQ
__m512i tmp1 = _mm512_rol_epi32(input1,16);/* t1,t0,t3,t2,t5,t4,t7,t6 */

// Negative the Q part
__m512i negImPosRe = _mm512_mask_sub_epi16(tmp1, nMaskNegQ, _mm512_setzero_si512(), tmp1); /* -

t1,t0,-t3,t2,-t5,t4,-t7,t6 */

// Multiply complex
tmp1 = _mm512_mulhrs_epi16(ReRe, input1);
__m512i tmp2 = _mm512_mulhrs_epi16(ImIm, negImPosRe);
return _mm512_adds_epi16(tmp1, tmp2);

}

------------

xmmEstH[1] = fmulconj(S_CAST<Is16vec32>(xmmHTemp[1]),S_CAST<Is16vec32>(xmmTAComp));

• There are still cases when  
dev/hvec/vec_complex may not always be 
sufficient

• We can define some custom classes in case 
missing which can be used within the code as 
an extension for default available vec_complex
support for CF16vec16. 

• The actual implementations would be using the 
available native instruction
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Example 4: 

template<unsigned NUM_LLRS, typename ISA>
struct PolarListRecursiveInt16
{
static constexpr unsigned halfLlrs = NUM_LLRS / 2;
static ListStructure
Recurse (const __m128i* RESTRICT llrs_in, const SimdBitset<NUM_LLRS>& frozen,

const SimdBitset<NUM_LLRS>& parity, BitList* RESTRICT message,
BitList* RESTRICT codeword, Is16vec8& ref_metric,
__m128i& ref_parity_reg, unsigned& ref_decision)

{
__align(64) __m128i llrBuffer[halfLlrs] = { };

ISA::template LlrPriorMinProdInt16<halfLlrs * 8>(llrs_in, llrs_in + 
halfLlrs, llrBuffer);

SimdBitset<halfLlrs> frozenUpper = frozen.Lower();
SimdBitset<halfLlrs> parityUpper = parity.Lower();

ISA::template LlrPosteriorFrozenInt16<halfLlrs * 8>(llrs_in, llrs_in
+ halfLlrs, llrBuffer);
<…>

list2 = PolarParityListRecursiveInt16<halfLlrs, ISA>::
Recurse(llrBuffer, frozenLower, parityLower, message + list1.msg_len, 
codeword + halfLlrs, ref_metric, ref_parity_reg, ref_decision);
}

<…>
}

};

• Polar decoder implementation using a 
recursive template

• Organized different so that the compiler can 
understand the structure and optimize 
accordingly : Size explicitly known through 
specialization, not calling itself, flat raw code 
generated without branches, with lots of 
parallelism. 

• Possible to mix this conventional function for 
higher levels to find right balance on 
flattening the code.

• Possible to specialize some specific sizes 
when developer knows better for some 
special cases

• Also applicable for FFT butterfly algorithm

• Maximized code reused and optimized
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Summary
1. Intel FlexRAN Reference Architecture is an optimized solution for building open, virtualized RAN

It aims for highly performant implementation for optimized signal processing workload while keeping 

SW consistency across micro-architecture generations. 

2. Available programming techniques: Intel C++ Class libraries and templates usage to allow developers to 
simplify code development and evolution, enable portability across multiple generations of Xeons, while still 
maximizing leverage of SIMD capabilities in each processor.

3. Examples of coding approach used in intensive workloads such as virtualized RAN (FlexRAN SDK) showing:

• leveraging existing classes maintained by Intel and tightly coupled with oneAPI intel compiler

• writing cleaner, smaller and more maintainable code, not relying on low level intrinsics

• software portability and reuse across multiple generations: allowing code to coexist with previous generations 
and to exploit the latest features in an efficient way notably for the new ISA in SPR

• reduce overall Total Cost of Ownership (TCO) and Faster Time To Market (TTM) without sacrificing performance
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Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more 
at www.Intel.com/PerformanceIndex

Performance results are based on testing as of dates shown in configurations and may not reflect all 
publicly available ​updates. See backup for configuration details. No product or component can be 
absolutely secure.​​

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or 
its subsidiaries. Other names and brands may be claimed as the property of others.
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